Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Virol Plus ; 3(1): 100138, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2180298

ABSTRACT

Background: Direct detection tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that bypass complicated nucleic acid/antigen purification steps are promising tools for the rapid diagnosis of coronavirus disease 2019 (COVID-19). Methods: To determine the analytical and clinical diagnostic performances of the direct detection assays, we compared 6 direct molecular detection assays, including two loop-mediated isothermal amplification (LAMP) assays and one lateral flow antigen assay, against the reference extraction-based RT-PCR assay using 183 respiratory samples (87 nasopharyngeal swabs, 51 saliva samples, and 45 sputum samples). Results: Analytical sensitivity analysis showed that the direct RT-PCR assay of Toyobo exhibited the lowest LOD of 1,000 copies/mL. Compared with the 80 positive and 103 negative samples based on the reference assay, the Toyobo assay had the highest positive percent agreement (PPA) of 96.3%, followed by the two direct RT-PCR assays of Takara and Shimadzu and one LAMP assay of Eiken (86.3-87.5%). The Fujirebio antigen assay had the lowest PPA of 44.7% among the assays tested. The negative percent agreement of these direct detection assays was 100%, except for the Eiken assay (96.3%). Conclusions: Large differences in PPA existed among the direct detection tests. Laboratories need to take these characteristics into consideration before implementing these assays.

2.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 865-866, 2021.
Article in English | Scopus | ID: covidwho-2012793

ABSTRACT

Rolling Circle Amplification (RCA) has shown significant potential for pathogen diagnostics providing high specificity and sensitivity combined with relatively low temperature (<37 °C) isothermal amplification. In the context of the ongoing COVID-19 pandemic, we report the development of an RCA-based method allowing direct detection of SARS-CoV-2 RNA in microfluidics. The viral RNA was hybridized to biotinylated oligos and L-probes in solution, enriched in a microchannel and subsequently amplified in situ using padlock probes against the L-probes. This method allowed the detection of 1x103 viral copies/μL within 90 minutes of amplification, demonstrating an alternative approach to current isothermal amplification methods. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

3.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: covidwho-1625824

ABSTRACT

Infection with enterovirus D68 (EV-D68) has been linked with severe neurological disease such as acute flaccid myelitis (AFM) in recent years. However, active surveillance for EV-D68 is lacking, which makes full assessment of this association difficult. Although a high number of EV-D68 infections were expected in 2020 based on the EV-D68's known biannual circulation patterns, no apparent increase in EV-D68 detections or AFM cases was observed during 2020. We describe an upsurge of EV-D68 detections in wastewater samples from the United Kingdom between July and November 2021 mirroring the recently reported rise in EV-D68 detections in clinical samples from various European countries. We provide the first publicly available 2021 EV-D68 sequences showing co-circulation of EV-D68 strains from genetic clade D and sub-clade B3 as in previous years. Our results show the value of environmental surveillance (ES) for the early detection of circulating and clinically relevant human viruses. The use of a next-generation sequencing (NGS) approach helped us to estimate the prevalence of EV-D68 viruses among EV strains from other EV serotypes and to detect EV-D68 minor variants. The utility of ES at reducing gaps in virus surveillance for EV-D68 and the possible impact of nonpharmaceutical interventions introduced to control the COVID-19 pandemic on EV-D68 transmission dynamics are discussed.


Subject(s)
Enterovirus D, Human/isolation & purification , Wastewater/virology , COVID-19/epidemiology , COVID-19/prevention & control , Capsid Proteins/genetics , Enterovirus D, Human/classification , Enterovirus D, Human/genetics , Humans , Phylogeny , RNA, Viral/genetics , SARS-CoV-2 , Sequence Analysis, DNA , United Kingdom/epidemiology , Wastewater-Based Epidemiological Monitoring , Water Microbiology
4.
mSystems ; 6(3): e0035321, 2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1269773

ABSTRACT

SARS-CoV-2 variants with multiple amino acid mutations in the spike protein are emerging in different parts of the world, raising concerns regarding their possible impact on human immune response and vaccine efficacy against the virus. Recently, a variant named lineage B.1.1.7 was detected and shown to be rapidly spreading across the UK since November 2020. As surveillance for these SARS-CoV-2 variants of concern (VOCs) becomes critical, we have investigated the use of environmental surveillance (ES) for the rapid detection and quantification of B.1.1.7 viruses in sewage as a way of monitoring its expansion that is independent on the investigation of identified clinical cases. Next-generation sequencing analysis of amplicons synthesized from sewage concentrates revealed the presence of B.1.1.7 mutations in viral sequences, first identified in a sample collected in London on 10 November 2020 and shown to rapidly increase in frequency to >95% in January 2021, in agreement with clinical data over the same period. We show that ES can provide an early warning of VOCs becoming prevalent in the population and that, as well as B.1.1.7, our method can detect VOCs B.1.351 and P.1, first identified in South Africa and Brazil, respectively, and other viruses carrying critical spike mutation E484K, known to have an effect on virus antigenicity. Although we did not detect such mutation in viral RNAs from sewage, we did detect mutations at amino acids 478, 490, and 494, located close to amino acid 484 in the spike protein structure and known to also have an effect on antigenicity. IMPORTANCE The recent appearance and growth of new SARS-CoV-2 variants represent a major challenge for the control of the COVID-19 pandemic. These variants of concern contain mutations affecting antigenicity, which raises concerns on their possible impact on human immune response to the virus and vaccine efficacy against them. Here, we show how environmental surveillance for SARS-CoV-2 can be used to help us understand virus transmission patterns and provide an early warning of variants becoming prevalent in the population. We describe the detection and quantification of variant B.1.1.7, first identified in southeast England in sewage samples from London (UK) before widespread transmission of this variant was obvious from clinical cases. Variant B.1.1.7 was first detected in a sample from early November 2020, with the frequency of B.1.1.7 mutations detected in sewage rapidly increasing to >95% in January 2021, in agreement with increasing SARS-CoV-2 infections associated with B.1.1.7 viruses.

5.
Virol J ; 18(1): 99, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232429

ABSTRACT

BACKGROUND: Sensitive, rapid, and accessible diagnostics continue to be critical to track the COVID-19 pandemic caused by the SARS-CoV-2 virus. RT-qPCR is the gold standard test, and comparison of methodologies and reagents, utilizing patient samples, is important to establish reliable diagnostic pipelines. METHODS: Here, we assessed indirect methods that require RNA extraction with direct RT-qPCR on patient samples. Four different RNA extraction kits (Qiagen, Invitrogen, BGI and Norgen Biotek) were compared. For detection, we assessed two recently developed Taqman-based modules (BGI and Norgen Biotek), a SYBR green-based approach (NEB Luna Universal One-Step Kit) with published and newly-developed primers, and clinical results (Seegene STARMag RNA extraction system and Allplex 2019-nCoV RT-qPCR assay). We also tested and optimized direct, extraction-free detection using these RT-qPCR systems and performed a cost analysis of the different methods evaluated here. RESULTS: Most RNA isolation procedures performed similarly, and while all RT-qPCR modules effectively detected purified viral RNA, the BGI system provided overall superior performance (lower detection limit, lower Ct values and higher sensitivity), generating comparable results to original clinical diagnostic data, and identifying samples ranging from 65 copies to 2.1 × 105 copies of viral genome/µl. However, the BGI detection system is more expensive than other options tested here. With direct RT-qPCR, simply adding an RNase inhibitor greatly improved detection, without the need for any other treatments (e.g. lysis buffers or boiling). The best direct methods detected ~ 10 fold less virus than indirect methods, but this simplified approach reduced sample handling, as well as assay time and cost. CONCLUSIONS: With extracted RNA, the BGI RT-qPCR detection system exhibited superior performance over the Norgen system, matching initial clinical diagnosis with the Seegene Allplex assay. The BGI system was also suitable for direct, extraction-free analysis, providing 78.4% sensitivity. The Norgen system, however, still accurately detected samples with a clinical Ct < 33 from extracted RNA, provided significant cost savings, and was superior to SYBR green assays that exhibited reduced specificity.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Reagent Kits, Diagnostic , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Humans , Nasopharynx/virology , RNA, Viral/isolation & purification , Sensitivity and Specificity
6.
J Virol Methods ; 289: 114048, 2021 03.
Article in English | MEDLINE | ID: covidwho-988686

ABSTRACT

We describe the optimisation of a simplified sample preparation method which permits rapid and direct detection of SARS-CoV-2 RNA within saliva, using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Treatment of saliva samples prior to RT-LAMP by dilution 1:1 in Mucolyse™, followed by dilution in 10 % (w/v) Chelex© 100 Resin and a 98 °C heat step for 2 min enabled detection of SARS-CoV-2 RNA in positive saliva samples. Using RT-LAMP, SARS-CoV-2 RNA was detected in as little as 05:43 min, with no amplification detected in 3097 real-time reverse transcription PCR (rRT-PCR) negative saliva samples from staff tested within a service evaluation study, or for other respiratory pathogens tested (n = 22). Saliva samples can be collected non-invasively, without the need for skilled staff and can be obtained from both healthcare and home settings. Critically, this approach overcomes the requirement for, and validation of, different swabs and the global bottleneck in obtaining access to extraction robots and reagents to enable molecular testing by rRT-PCR. Such testing opens the possibility of public health approaches for effective intervention during the COVID-19 pandemic through regular SARS-CoV-2 testing at a population scale, combined with isolation and contact tracing.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , Humans , RNA, Viral/analysis
SELECTION OF CITATIONS
SEARCH DETAIL